\qquad ID: \qquad

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set and Tutorial 11

Semester/Year: 2/2015
Course Title: Basic Electrical Engineering
Instructor:
Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site:
http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: Not Due

Instructions

1. All phasor should be answered in polar form where the magnitude is positive and the phase is between -180° and 180°.
2. All sinusoid should be answered in the cosine form where the amplitude is positive and the phase is between -180° and 180°.

Questions

The first three questions are here to give you a warm-up exercise for the computation that you will encounter throughout chapters 7,8 and 9 . You will need to be able to work with complex numbers and many of the calculations will require the use of a calculator.

1) Simplify and then express the following complex numbers in polar form. Make sure that the magnitude values are positive and the phase values are between -180° and 180°.
a) $-6+8 j=10<127^{\circ}$ $\begin{aligned} & \text { Getting an angle } \in(90,180) \\ & \text { because }-6+8 j \text { is here }\end{aligned}$

b) $\frac{50 \angle-30^{\circ}}{10 j+5-2 j}=\frac{50 L-30^{\circ}}{5+8 j} \approx \underbrace{5.3}_{j}<-88^{\circ}$

$$
\text { This can be found by hand via } \frac{50}{\sqrt{5^{2}+8^{2}}}=\frac{50}{\sqrt{89}}
$$

$$
\text { GRecall that } \left.\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{8}\right|} .\right)
$$

\qquad ID: \qquad
2) Simplify and then express the following complex numbers in rectangular form.
a) $-10 j+\frac{(3-2 j) \times(8+10 j)}{(3-2 j)+(8+10 j)} \approx 3.22-11.1 j$

Alternatively, one can try to work on this part by hand:

$$
\frac{(3-2 j) \times(8+10 j)}{(3-2 j)+(8+10 j)}=\frac{44+14 j}{11+8 j}=\frac{(44+14 j)(11-8 j)}{(11-8 j)(11-8 j)}=\frac{596-198 j}{11^{2}+8^{2}}=\frac{596}{185}-\frac{198}{185} j
$$

Finally, after adding " $-10 j$ " to the result, we have

$$
\frac{596}{185}-\left(\frac{198}{185}+10\right) j=\frac{596}{185}-\frac{2048}{185} j
$$

b) $\left(20 \angle-15^{\circ}\right) \times \frac{100 j}{60+100 j} \approx 17.15<15.96^{\circ}$

Alternatively, we can first convert every terms to polar form:

$$
100^{\circ}=100<90^{\circ}
$$

$$
60+100 j=20 \sqrt{34}<59^{\circ}
$$

Therefore,

$$
\therefore \sqrt{60^{2}+100^{2}}=10 \sqrt{36+100}=20 \sqrt{9+25}=20 \sqrt{34}
$$

$$
\left(20<15^{\circ}\right) \times \frac{100 j}{60+100 j}=\frac{20 \times 100}{22 \sqrt{34}} L \underbrace{\left(-15^{\circ}+90^{\circ}-59^{\circ}\right)}_{16^{\circ}}
$$

3) Suppose $\mathbf{V}_{S}=20 \angle 90^{\circ}, \mathbf{I}_{S}=5, \mathbf{Z}_{1}=-2 j, \mathbf{Z}_{2}=10 j, \mathbf{Z}_{3}=8, \mathbf{Z}_{4}=-2 j$, and $\mathbf{Z}_{5}=4$.

Furthermore, suppose

$$
\mathbf{I}_{3}=\mathbf{I}_{S} \text {, we have three unknown variables (phasors) here: } \overrightarrow{\mathrm{I}}_{1}, \overrightarrow{\mathrm{I}}_{2} \text {, and } \overrightarrow{\mathrm{I}}_{3}
$$

$$
\underbrace{\left(-\vec{z}_{3}-\vec{z}_{2}-\vec{z}_{4}\right)}_{-8-10 j-(-2 j)} \vec{I}_{1}+\vec{z}_{-2,}^{\vec{z}_{4}} \vec{I}_{2}=\underbrace{-\vec{I}_{3}} \underbrace{\vec{z}_{2}}_{10 j}
$$

$$
\begin{aligned}
&=-8-8 j \\
&(-8-8 j) \vec{I}_{1}+(-2 j) \vec{I}_{2}=-50 j \\
&(+4+4 j) \vec{I}_{1}+(+j) \vec{I}_{2}=+25 j) \times-\frac{1}{2}(1)
\end{aligned}
$$

$$
\begin{aligned}
\longrightarrow \underbrace{\vec{z}_{4} \vec{I}_{1}}_{-2 j}+(\underbrace{\left(-\vec{z}_{4}-\vec{z}_{1}-\vec{z}_{5}\right.}_{2 j+2 j-4}) \vec{I}_{2} & ={\overrightarrow{\vec{v}_{5}}-\vec{I}_{3} \vec{z}_{2}}_{20<90^{\circ}-5(-2 j)} \\
=-4+4 j & =20 j+10 j=30 j \\
(-2 j) \vec{I}_{1}+(-4+4 j) \vec{I}_{2} & =30 j \\
(-j) \vec{I}_{1}+(-2+2 j) \vec{I}_{2} & =15 j \\
\vec{I}_{1}+(-2-2 j) \vec{I}_{2} & =-15 \\
\vec{I}_{1} & =-15+(2+2 j) \vec{I}_{2}
\end{aligned}
$$

substitute this \vec{I}_{1} into (1) to get $(4+4 j)\left(-15+(2+2 j) \vec{I}_{2}\right)+j \vec{I}_{2}=25 j$
which gives $\quad \vec{I}_{2}=\frac{25 j+15(4+4 j)}{(474 j)(2+2 j) r j}=\frac{60+85 j}{17 j}=5-\frac{60}{17 j}$
$\approx 5-3.53 j \approx 6.12<-35.2^{\circ}$
\qquad ID: \qquad
4) [Alexander and Sadiku, 2009, Ex 9.1] Find the amplitude, phase, period, and frequency of the sinusoid

$$
v(t)=12 \cos \left(50 t+10^{\circ}\right)
$$

Recall that for a sinusoid in standard form

$$
\begin{aligned}
& \text { The amplitude is } 12 \text {. } \\
& \text { The phase is } 10^{\circ} \text {. } \\
& \text { The angular frequency is } w=50 \text {. } \\
& \text { The frequency is } \frac{w}{2 \pi}=\frac{50}{2 \pi}=\frac{25}{\pi} \approx 7.958 \text {. } \\
& \text { The period is } \frac{1}{\text { freq. }}=\frac{1}{25 / \pi}=\frac{\pi}{25} \approx 0.1257 .
\end{aligned}
$$

5) Find the phasors (in standard form) corresponding to the following signals.
a) $v(t)=120 \sin \left(10 t-50^{\circ}\right) V=120 \cos \left(10 t-50^{\circ}-90^{\circ}\right)=120 \cos \left(10 t-140^{\circ}\right)$芷

$$
\vec{V}=120 \angle-140^{\circ} \mathrm{V}
$$

$$
\sin \rightarrow \cos
$$

b) $i(t)=-60 \cos \left(30 t+10^{\circ}\right) m A=60 \cos \left(30 t+10^{\circ}-180^{\circ}\right)=60 \cos \left(30 t-170^{\circ}\right)$

$$
\text { 凹 } \quad-\cos \pi \cos
$$

$$
\vec{I}=60 \angle-170^{\circ} \mathrm{mA}
$$

c) $i(t)=-8 \sin \left(10 t+70^{\circ}\right) m A=8 \cos (10 t+70^{\circ} \underbrace{\underbrace{180^{\circ}}_{-\cos \rightarrow \cos })}_{\substack{\circ \\ \sin \rightarrow \cos \\-90^{\circ}}}=8 \cos \left(10 t+160^{\circ}\right)$

$$
\vec{I}=8 \angle 160^{\circ} \mathrm{mA}
$$

6) [F2010]
a) Find the sinusoid $x(t)$ which is represented by a phasor $\mathbf{X}=-7+7 j$. Assume $\omega=100$ rad/s. (Your answer should be a time-dependent sinusoid in standard form.)

$$
=\frac{\sqrt{7^{2}+7^{2}}}{7}=7 \sqrt{2}
$$

b) Simplify $x(t)=7 \cos \left(t-777^{\circ}\right)-7 \sin \left(t-77^{\circ}\right)$. (Your answer should be a time-dependent sinusoid in standard form.)

$$
\begin{aligned}
& =7 \cos \left(t-72^{\circ}-90^{\circ}+180^{\circ}\right) \\
& =7 \cos \left(t+13^{\circ}\right)
\end{aligned}
$$

$$
x(t)=\underbrace{\left.7-777^{\circ}+720^{\circ}\right)}_{L=7 \cos \left(t-777^{\circ}\right)-7 \sin \left(t-77^{\circ}\right)}
$$

$$
=7 \cos \left(t-57^{\circ}\right)
$$

$$
\text { Phasor form: } \vec{x}=7 \angle 57^{\circ}+7 \angle 13^{\circ} \times 3.812-5.37 j+6.821+1.56 j
$$

\qquad ID: \qquad
7) [Alexander and Sadiku, 2009, Q9.24a] Find $v(t)$ in the following integrodifferential equation using the phasor approach:

$$
v(t)+\int v d t=5 \cos \left(t+45^{\circ}\right)
$$

$$
\begin{aligned}
& \text { Recall that } \\
& v(t) \Leftrightarrow \vec{v} \\
& \frac{d}{d t} v(t) \Leftrightarrow j \omega \vec{v}
\end{aligned}
$$

step 1: Conversion to phasor rep. $\vec{V}+\frac{\vec{V}}{j w}=5<45^{\circ}$
step 2 : Solve for the variable under consideration

$$
\begin{aligned}
\vec{V}\left(1+\frac{1}{j}\right) & =5 \angle 45^{\circ} \\
\vec{V} & =\frac{5 \angle 45^{\circ}}{1-j}=\frac{5 \angle 45^{\circ}}{\sqrt{2} \angle-45^{\circ}}=\frac{5}{\sqrt{2}} \angle 90^{\circ}
\end{aligned}
$$

step 3 : Con version back
to time domain $V(t)=\frac{5}{\sqrt{2}} \cos \left(t+90^{\circ}\right) \approx 3.536 \cos \left(t+90^{\circ}\right)$
8) $\left(^{*}\right)$ Consider the signal $x(t)$ in Figure 1 below. Suppose $x(0)=-3.356$. Find its phasor.

Figure 1

Hint: 1) The amplitude is an integer. Find it first. 2) When $t=0$, we also have $\omega t=0$.
Shifting to the right means \varnothing is negative.
so,

$$
-180^{\circ}<\varnothing<-90^{\circ}
$$

Equivalently, the graph is also the cosine function shifted to the left by $\&$ where

$$
180^{\circ}<\varnothing<270^{\circ}
$$

Now,
from the general form of sinusoidal waveform

$$
x(t)=A \cos (\omega t+\varnothing)
$$

From the plot, we have $A=4$.

$$
\begin{aligned}
& x(0)=4 \cos (\varnothing) \\
& 11 \\
& -3.356 \\
& \cos \phi=-\frac{3.356}{4} \approx-0.839
\end{aligned}
$$

Two solutions: $\varnothing=147^{\circ}$ and -147°

Because δ must be between -180° and -90°,
we know that $\boldsymbol{\sigma}=-147^{\circ}$.
Therefore,

$$
\vec{x}=4 L-147^{\circ}
$$

Note that $\phi=147^{\circ}$ will give different graph. Try it! You will get?

which start at the wrong position.

